The $p$-integrable Teichmüller space for $p \geqslant 1$

نویسندگان

چکیده

We verify that the $p$-integrable Teichmüller space $T_{p}$ admits canonical complex Banach manifold structure for any $p \geq 1$. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of in terms $p$-Besov $p>1$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Teichmüller Space

We describe explicitly a noncommutative deformation of the *-algebra of functions on the Teichmüller space of Riemann surfaces with holes equivariant w.r.t. the mapping class group action.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

NEUROGENIC TUMORS OF THE NOSE AND P OSTNASAL SPACE

Non-epithelial, benign extracranial neurogenic tumors of the nasal cavities are reported in the literature with extreme rarity. These tumors differ from the more common congenital gliomas, encephaloceles, etc. in that they sometimes are detached from the brain tissues. These tumors have intracranial origins. They are congenital or acquired and may involve any of the nerves inside the nose....

متن کامل

p–species integrable reaction–diffusion processes

We consider a process in which there are p–species of particles, i.e. A1, A2, · · · , Ap, on an infinite one–dimensional lattice. Each particle Ai can diffuse to its right neighboring site with rate Di, if this site is not already occupied. Also they have the exchange interaction Aj +Ai → Ai +Aj with rate rij . We study the range of parameters (interactions) for which the model is integrable. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy. Series A, Mathematical sciences

سال: 2023

ISSN: ['0386-2194']

DOI: https://doi.org/10.3792/pjaa.99.008